- Author
- reference
-
[Sov. J. Part. & Nucl. 21 (1990) 384]
[Sov. J. Part. & Nucl. 23 (1992) 603]
[Sov. J. Part. & Nucl. 25 (1994) 662]
10 J. Neumann, E. Wigner, Phys. Z. 30 (1929) 465
11 A. A. Stahlhofen, Phys. Rev. A51 (1995) 934
12 F. H. Stillinger, D. R. Herrik, Phys. Rev. A 11 (1975) 446;
13 M. S. P. Eastham, H. Kalf, Schrödinger-Type Operators with continuous Spectr a. Pitman, London, 1982
14 F. Calogero, A. Degasperis, Lett. Nuovo Cim. 23 (1978) 143
15 F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S. N. G. Chu, A. Y. Cho, Nature 358 (1992) 565
16 B. N. Zakhariev, V. M. Chabanov, Fiz. Elem. Chastits At. Yadra 25 (1994) 1561
17 B. N. Zakhariev, Fiz. Elem. Chastits At. Yadra 23 (1992) 1387
18 B. N. Zakhariev, N. A. Kostov, E. B. Plekhanov, Fiz. Elem. Chastits At. Yadra 21 (1990) 914
19 B. N. Zakhariev, Lessons on Quantum Intuition, Dubna, JINR, 1996; in:
1 R. G. Newton, Scattering Theory of Waves and Particles, 2nd ed. Springer, New York, 1982
20 T. Stroh, B. N. Zakhariev Physica Scripta 55 (1997) 9
2 B. N. Zakhariev, A. A. Suzko, Direct and Inverse Problems, Springer, Heidelberg, 1990
3 K. Chadan, P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd ed. Springer, Heidelberg, 1989
4 F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, No. 5 & 6 (1995) 268 (and Refs therein)
5 A. A. Andrianov, M. v. Ioffe, V. P. Spiridonov, Phys. Lett. A 174 (1993) 273;
6 D. Baye, J. Phys. A28 (1995) 5079 and references therein.
7 C. v. Sukumar, J. Phys. A 18 (1985) 2917, 2937;
8 J. Pöschel, E. Trubowitz, Inverse Spectral Theor y. Academic, New York. 1987
9 S. A. Sofianos, A. Papastylianos, H. Fiedeldey, K. Amos, L. J. Allen (to be published 1997)
J. Papademos, U. Sukhatme, A. Pagnamenta, Phys. Rev. A 48 (1992) 3525
J. Phys. A 21 (1988) L455
JINR Rapid Commun. 6 [45]
N. Meyer-Vernet, Am. J. Phys. 50 (1982) 353;
Proc. Conf. Inverse Problems: Proceedings of the International Conference, Montpellier, 1986 (Aca d. Press, New York) 141; 1990,
V. P. Berezovoy, A. I. Pashnev, Z. Phys. C 51 (1991) 525
- size
-
0136 - 0143
- keyword(s)
-
<KWD>Spectral weights variation
Bound and scattering states
Quantum intuition
Wave bunching
- abstract
-
It is shown that the potential perturbation that shifts a chosen standing wave in space is a block of potential barrier and well for every wave bump between neighbouring knots. The algorithms shifting the range of the primary localization of a chosen bound state in a potential well of finite width are as well applicable to the scattering functions if states of the continuous spectrum are considered as bound states normalized to unity but distributed on an infinite interval with vanishing density. The potential perturbations of the same type on the half-axis concentrate the scattering wave at the origin, thus creating a bound state embedded into the continuous spectrum (zero width resonance).
- article types
- research article