- Author
- Mentioned institution
-
Deutschland. Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie
- reference
-
10 R. Jost, Helv. Phys. Acta. 20 (1947) 256
11 M. Kato, Annals of Physic. 31 (1965) 130
12 D. Morgan, M. R. Pennington, Phys. Rev. D48 (1993) 1185
13 A. D. Martin, E. N. Ozmutlu, E. J. Squires, Nucl. Phys. B121 (1977) 514
14 F. v. Hippel, C. Quigg, Phys. Rev. 5 (1972) 624
15 S. M. Flatte, Phys. Lett. B63 (1976) 224
16 I. J. R. Aitchison, Nucl. Phys. A189 (1972) 417
17 K. M. Watson, Phys. Rev. 8852 (1911) 163
18 M. Foster et al., Nucl. Phys. B6 (1968) 107
19 D. Morgan, private communication
1 E. P. Wigner, Phys. Rev. 70 (1946) 15
20 A. Donnachie, A. B. Clegg, Z. Physi. C34 (1987) 257;
21 M. G. Bowler, J. Phys. G5 (1979) 203
22 M. G. Bowler, M. A. V. Game, I. J. R. Aitchison, J. B. Dainton, Nucl. Phys. B97 (1975) 227
23 R. S. Longacre, Phys. Rev. D26 (1982) 82;
2 E. P. Wigner, L. Eisenbud, Phys. Rev. 72 (1947) 29
3 R. H. Dalitz, S. Tuan, Ann. Phys. 10 (1960) 307
4 A. M. Badalyan, L. P. Kok, M. I. Polikarpov, Yu. A. Simonov, Phys. Rep. 82 (1982) 31
5 A. D. Martin, T. D. Spearman, Elementary Particle Theory', North-Holland Publishing Co., Amsterdam 1970
6 R. N. Cahn, P. V. Landshoff, Nucl. Phys. B266 (1986) 451
7 K. L. Au, D. Morgan, M. R. Pennington, Phys. Rev. D35 (1987) 1633
8 S. U. Chung, „Spin Formalisms“, CERN Yellow Report, CERN (1971) 71 - 78
9 M. Jacob, G. C. Wick, Ann. Phys. (USA. 7 (1959) 404
A. Etkin, et al., Phys. Rev. D25 (1982) 2446
R. S. Longacre, et al., Phys. Lett. B177 (1986) 223;
Z. Physi. 42 (1989) 663
- size
-
0404 - 0430
- keyword(s)
-
<KWD><i>K</i>-matrix
coupled channel analysis
overlapping resonances
- abstract
-
A description is given of the <I>K</I>-matrix formalism. The formalism, which is normally applied to two-body scattering processes, is generalized to production of two-body channels with finalstate interactions. A multi-channel treatment of production of resonances has been worked out in the <I>P</I>-vector approach of Aitchison. An alternative approach, derived from the <I>P</I>-vector, gives the production amplitude as a product of the <I>T</I>-matrix for a two-body system and a vector <I>Q</I> specifying its production. This formulation, called <I>Q</I>-vector approach here, has also been worked out. Examples of practical importance are given.
- article types
- research article