- Author
- reference
-
1 [Russian Text Ignored], 1950.
2 [Russian Text Ignored], 1963.
3 [Russian Text Ignored], 1964.
4 [Russian Text Ignored], (1959) 1652.
5 Feshbach, H., Unified theory of nuclear reactions. Ann. of Phys. 5, 357;
6 [Russian Text Ignored], 1963.
7 [Russian Text Ignored], 1962.
Unified theory of nuclear reactions. Ann. of Phys. 19 (1962) 287.
- size
-
0305 - 0311
- abstract
-
The expansion of the function Ψ of three particles interacting with each other via the potentials <I>V</I><sub>12</sub>; <I>V</I><sub>13</sub>; <I>V</I><sub>23</sub> in a complete set of the functions describing the motion of two particles coupled by a finite potential well <I>V</I><sub>12</sub> (the complex particle) is considered. It is shown that in this expansion the population of the highest virtual states decreases with energy as \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{\varepsilon }{{\mathop \varepsilon \nolimits_n^3 }} $\end{document}. The system of integral differential equations for the bound state of three particles can be cut off (all the φ<sub><I>n</I></sub> in (9) with ε<sub><I>n</I></sub> > ε<sub><I>s</I></sub>, where ε<sub><I>s</I></sub> is rather large, may be neglected).
- article types
- research article